Phân tích EFA và tiêu chí đánh giá


1. Nhân tố khám phá EFA là gì?

Phân tích nhân tố khám phá, gọi tắt là EFA, dùng để rút gọn một tập hợp k biến quan sát thành một tập F (với F < k) các nhân tố có ý nghĩa hơn. Trong nghiên cứu, chúng ta thường thu thập được một số lượng biến khá lớn và rất nhiều các biến quan sát trong đó có liên hệ tương quan với nhau. Thay vì đi nghiên cứu 20 đặc điểm nhỏ của một đối tượng, chúng ta có thể chỉ nghiên cứu 4 đặc điểm lớn, trong mỗi đặc điểm lớn này gồm 5 đặc điểm nhỏ có sự tương quan với nhau. Điều này giúp tiết kiệm thời gian và kinh phí nhiều hơn cho người nghiên cứu.

2. Các tiêu chí đánh giá trong phân tích EFA

- Hệ số KMO (Kaiser-Meyer-Olkin) là một chỉ số dùng để xem xét sự thích hợp của phân tích nhân tố. Trị số của KMO phải đạt giá trị 0.5 trở lên (0.5 ≤ KMO ≤ 1) là điều kiện đủ để phân tích nhân tố là phù hợp. Nếu trị số này nhỏ hơn 0.5, thì phân tích nhân tố có khả năng không thích hợp với tập dữ liệu nghiên cứu.

- Kiểm định Bartlett (Bartlett’s test of sphericity) dùng để xem xét các biến quan sát trong nhân tố có tương quan với nhau hay không. Chúng ta cần lưu ý, điều kiện cần để áp dụng phân tích nhân tố là các biến quan sát phản ánh những khía cạnh khác nhau của cùng một nhân tố phải có mối tương quan với nhau. Điểm này liên quan đến giá trị hội tụ trong phân tích EFA được nhắc ở trên. Do đó, nếu kiểm định cho thấy không có ý nghĩa thống kê thì không nên áp dụng phân tích nhân tố cho các biến đang xem xét. Kiểm định Bartlett có ý nghĩa thống kê (sig Bartlett’s Test < 0.05), chứng tỏ các biến quan sát có tương quan với nhau trong nhân tố.

- Trị số Eigenvalue là một tiêu chí sử dụng phổ biến để xác định số lượng nhân tố  trong phân tích EFA. Với tiêu chí này, chỉ có những nhân tố nào có Eigenvalue > 1 mới được giữ lại trong mô hình phân tích.

- Tổng phương sai trích (Total Variance Explained) ≥ 50% cho thấy mô hình EFA là phù hợp. Coi biến thiên là 100% thì trị số này thể hiện các nhân tố được trích cô đọng được bao nhiêu % và bị thất thoát bao nhiêu % của các biến quan sát.

- Hệ số tải nhân tố (Factor Loading) hay còn gọi là trọng số nhân tố, giá trị này biểu thị mối quan hệ tương quan giữa biến quan sát với nhân tố. Hệ số tải nhân tố càng cao, nghĩa là tương quan giữa biến quan sát đó với nhân tố càng lớn và ngược lại. Theo Hair và cộng sự (2010), Multivariate Data Analysis hệ số tải từ 0.5 là biến quan sát đạt chất lượng tốt, tối thiểu nên là 0.3.

  • Factor Loading ở mức ± 0.3: Điều kiện tối thiểu để biến quan sát được giữ lại.
  • Factor Loading ở mức ± 0.5: Biến quan sát có ý nghĩa thống kê tốt.
  • Factor Loading ở mức ± 0.7: Biến quan sát có ý nghĩa thống kê rất tốt.